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extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific 
and technical findings that are preliminary or of 
specialized interest, e.g., quick release reports, 
working papers, and bibliographies that contain 
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Specialized services that complement the STI 
Program Office’s diverse offerings include creating 
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TECHNICAL MEMORANDUM

A METHOD FOR INCORPORATING CHANGING STRUCTURAL CHARACTERISTICS 
DUE TO PROPELLANT MASS USAGE IN A LAUNCH VEHICLE ASCENT SIMULATION

1.  INTRODUCTION

 Launch vehicles consume large quantities of propellants and oxidizers quickly, causing the mass 
properties and structural dynamics of the vehicle to change dramatically. The current method of handling 
this change for structural load assessments is to simply have a large collection of structural models  
representing various propellant fill levels. This creates a large database of models and compounds the 
problem of having easily derivable reduced models. The offline processing required to generate numer-
ous models to populate the database can be large and would have to be repeated for model changes. 
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2.  PROPELLANT MASS METHODOLOGY

 Section 2 presents a method for handling these mass changes in a more efficient manner. 
The method essentially allows for the subtraction of propellant mass as the propellant is used 
in the simulation. This subtraction is done in the modal domain of a launch vehicle generalized model. 
The additional computation involved is primarily in terms of constructing the used propellant mass 
matrix from an initial propellant model and further matrix multiplications and subtractions. There 
is an additional eigenvalue solution required to uncouple the new equations of motion; however, 
this is a much simpler calculation since it starts from a system that is already substantially uncoupled. 

 Assume a vehicle model empty of propellants:
 

 ,M x K x Fv v v v v+ =p7 7A A# # #- - -  (1)

where

 
Mv7 A 

= mass matrix of empty vehicle

 
Kv7 A 

= stiffness matrix of empty vehicle

 xvp# - = acceleration of empty vehicle degrees of freedom (dofs)

 xv# - = displacement of empty vehicle dofs

 Fv# - = applied forces acting on the empty vehicle,

reduced modally:

 x qv v v= U7 A# #- -  (2a)

 x qv v v= Up p7 A# #- - (2b)

 I q q Fv v v v v
2

+ =~ Up6 9 7@ C A# # #- - -  , (3)

where

 vU7 A = eigenvectors or modeshapes of unconstrained empty vehicle

 qv# - = generalized displacement of empty vehicle generalized dofs

 qvp# - = generalized acceleration of empty vehicle generalized dofs
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 I6 @ = identity matrix resulting from mass normalized modeshapes

 v
2~9 C = eigenvalues of unconstrained empty vehicle.

Now, assume a propellant load on a subset of the original vehicle dofs:

 ,M xP vP
p7 A# -  (4)

where

 MP7 A = mass matrix of propellant model

 xvPp# - = accelerations of propellant model dofs selected from xvp# -.

 Using the same modal transformation, vU7 A, and selecting the appropriate rows for the propellant 
dofs, vPU7 A, the propellant mass can be reduced:

 ,M q M qvP P vP v P v=U U p p7 7 7 9A A A C# #- -  (5)

where

 vPU7 A = propellant model selected rows from vU7 A

 M
P

9 C = propellant model mass matrix converted to empty vehicle generalized dofs.

M
P

9 C is not necessarily diagonal because the modes are no longer orthogonal; however, this propellant 
model can now be coupled to the vehicle:

 .I M q q F
P v v v v v

2
+ + =~ Upb l6

9 9 7@
C C A# # #- - -  (6)

This model can then be reduced modally once again. This time the reduction is at a much reduced 
cost because of the reduced number of dofs and the uncoupled nature of the nonpropellant portions 
of the equation:

 q qv v2 2= U7 A# #- - (7a)

 q qv v2 2= Up p7 A# #- - (7b)

 ,I q q Fv v v v2 2
2

2 2+ =~ U Up6 9 7 7@ C A A# # #- - -  (8)

where

 2U7 A = eigenvectors of modally modified unconstrained empty vehicle

 qv2# - = generalized displacement of modally modified empty vehicle generalized dofs
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 qv2p# - = generalized acceleration of modally modified empty vehicle generalized dofs

 I6 @ = identity matrix resulting from mass normalized modeshapes

 2
2~9 C = eigenvalues of modally modified unconstrained empty vehicle.

This would once again make the modes orthogonal and uncouple the equations of motion for easy 
solution.

 If all modes are kept during this process, it is easy to see that the solutions would be the same. 
However, if modes are truncated, a good deal of information could be lost. This is because the empty 
vehicle structure would have higher frequency modes that could be truncated. In reality, some of these 
modes would be lowered in frequency by the presence of the propellant mass and should be retained. 

 This truncation problem can be compensated for in the following way. The first vehicle model 
is constructed for a fully loaded vehicle with propellant model. This would assure that all the lower fre-
quencies of interest are retained. The subset propellant model is then actually a model of the propellant 
used or removed. Equation (6) would then become

 
.I M q q F

P v v v v v
2

- + =~ Upb l6
9 9 7@

C C A# # #- - -  (9)

Note the change in sign in the first term. This is to reflect that mass is being removed from the vehicle.

 Equation (9) can then be reduced further as in equation (8). This uncoupled set of equations 
of motion could then be solved to provide the response of the complete system. Since the equations 
are uncoupled, they could be solved using a closed-form solution of a second-order dynamic equation 
with initial conditions. This solution still assumes the mass and the dynamics of the system remain con-
stant during the time of solution. However, there is now an approach that would allow a much greater 
frequency of updating the mass characteristics of the system so the approximation has less of an effect. 

 Load transformation matrices (LTMs) used for data recovery are most easily defined in terms 
of the initial model governed by equations (1) and (3). For the displacement method of data recovery, 
generating the correct response is simply a matter of including the additional transformation of 
equation (7):

 ,qq 2Resp LTMLTM vv v v2= = UU U6 7 6 7@ A @ A# # " #- - , -
 (10)

where

 {Resp} = desired system response
 [LTM] = displacement method LTM.
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 qv2p# - = generalized acceleration of modally modified empty vehicle generalized dofs

 I6 @ = identity matrix resulting from mass normalized modeshapes

 2
2~9 C = eigenvalues of modally modified unconstrained empty vehicle.

This would once again make the modes orthogonal and uncouple the equations of motion for easy 
solution.

 If all modes are kept during this process, it is easy to see that the solutions would be the same. 
However, if modes are truncated, a good deal of information could be lost. This is because the empty 
vehicle structure would have higher frequency modes that could be truncated. In reality, some of these 
modes would be lowered in frequency by the presence of the propellant mass and should be retained. 

 This truncation problem can be compensated for in the following way. The first vehicle model 
is constructed for a fully loaded vehicle with propellant model. This would assure that all the lower fre-
quencies of interest are retained. The subset propellant model is then actually a model of the propellant 
used or removed. Equation (6) would then become

 
.I M q q F

P v v v v v
2

- + =~ Upb l6
9 9 7@

C C A# # #- - -  (9)

Note the change in sign in the first term. This is to reflect that mass is being removed from the vehicle.

 Equation (9) can then be reduced further as in equation (8). This uncoupled set of equations 
of motion could then be solved to provide the response of the complete system. Since the equations 
are uncoupled, they could be solved using a closed-form solution of a second-order dynamic equation 
with initial conditions. This solution still assumes the mass and the dynamics of the system remain con-
stant during the time of solution. However, there is now an approach that would allow a much greater 
frequency of updating the mass characteristics of the system so the approximation has less of an effect. 

 Load transformation matrices (LTMs) used for data recovery are most easily defined in terms 
of the initial model governed by equations (1) and (3). For the displacement method of data recovery, 
generating the correct response is simply a matter of including the additional transformation of 
equation (7):

 ,qq 2Resp LTMLTM vv v v2= = UU U6 7 6 7@ A @ A# # " #- - , -
 (10)

where

 {Resp} = desired system response
 [LTM] = displacement method LTM.

 For acceleration method LTMs, some additional work is required because of the inclusion of an 
applied force term. Equation (9) can be rewritten by moving the propellant mass term to the right-hand 
side and treating it as an applied load:

 .I q q F M qv v v v v P v
2

+ = +~ Up p6 9 7 9
@ C A C# # # #- - - -  (11)

In this case, the acceleration term simply includes the equation (7) transformation. The applied force 
term must include the propellant inertial load term:

 A q D q2 2Resp LTM LTMv v v v2 2= +U U U Up6 7 6 6 7 6@ A @ @ A @# # #- - -

 ,F F M q2LTM v v P v2+ +U U pb l6 7 9
6@ A C

@# #- -  (12)

where

 {Resp} = desired system response
 [LTMA] = acceleration term of acceleration method LTM
 [LTMD] = displacement term of acceleration method LTM
 [LTMF] = applied force term of acceleration method LTM.
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3.  EARLY PROTOTYPE

 In 2001, the Space Launch Initiative program requested the Marshall Space Flight Center engi-
neering groups to study what would be required to perform integrated system-level technical assess-
ments of candidate launch systems. From this, the Vehicle Integrated Performance Analysis team was 
formed as a prototype answer and culminated in an assessment of the Saturn V ascent vehicle. This 
vehicle was chosen to validate the process because of the availability of data and the lack of proprietary 
or political issues.

 Figure 1 shows a comparison of first-stage bending moments for a given flight loading condition 
with varied propellant mass. The solid lines indicate results with the propellant masses modeled seper-
ately for each propellant fill level. The point marker curves indicate results using the full propellant mass 
modified by the mass reduction method described in this Technical Memorandum. Further investigation 
needs to take place regarding modal truncation effects; however, the results are excellent. The full 
propellant mass vehicle model was reduced carrying modes up to ≈25 Hz. 
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Figure 1.  Mass model results comparison; VAC–02 bending moment—max Q-alpha loads.
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4.  CONCLUSION

 Launch vehicles consume large quantities of propellants and oxidizers quickly. A method 
has been presented for handling these mass changes more efficiently for a structural load analysis 
simulation. The method allows for the subtraction of propellant mass as the propellant is used. 
The subtraction is done in the modal domain of a launch vehicle generalized model. The method 
has been successfully tested in a simulation of Saturn V loads. Results from the use of the method 
have been compared to results from separate structural models for several propellant levels. This 
comparison shows excellent agreement. Effects of modal truncation should be assessed when using 
the method. The method could also be further developed to encompass more complicated propellant 
models, including slosh dynamics.
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